
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: DATA STRUCTURES –
PART I

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Data Structures

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Explain what a data structure is, and what it means to design a
data structure

• Indicate when a data structure is needed, and specify the data
structure that matches the situation

• Describe standard data structures such as stacks, queues,
singly/doubly linked lists, and discuss and compare/contrast
different implementations of them

• Define graphs, graph representations, and basic graph concepts

• Define trees, tree representations, and basic related concepts

CS 6212 Design and Analysis of Algorithms Data Structures

2

OUTLINE

• Preliminaries
• Definition of data structures

• Design of data structure

• When a data structure is needed in the context of algorithm design

• Overview of Stacks and Queues

• Records and Pointers

• Linked Lists

• Graphs

• Trees

CS 6212 Design and Analysis of Algorithms Data Structures

3

WHAT IS A DATA STRUCTURE

• A data structure is
• An organization of a data set

• Several operations / actions to be performed on the data set

• Examples of data organizations:
• Arrays, tables (multidemensional arrays), lists, trees, etc

• Examples of operations/actions:
• Insert (i.e., add) a new data element

• Find a data element in the data set

• Delete an existing element

• Find the minimum, or the maximum, or the most recently added element

CS 6212 Design and Analysis of Algorithms Data Structures

4

THE DESIGN PROCESS OF
A DATA STRUCTURE

• Any design process is an input-output process
• Input: the specifications (“specs”) of what is to be designed

• Output: A design that fulfills the specs

• Data structure design process
• Input:

• Specs of the data set: data type, and possibly data set size

• Specifications of the operations

• Output:
• An organization of the data set

• An algorithm for each operation

CS 6212 Design and Analysis of Algorithms Data Structures

5

D.S.
DesignSpecs of

the Ops

Data
Specs Org of

the Data

Algorithms
for the Ops

A NOTE ABOUT DATA STRUCTURE DEFINITION
AND DESIGN

• The specifications of some data structures include (partially
or fully) the actual organization of the data

• Examples: linked lists, binary trees, heaps, etc.

• In such cases, we’ll call (in this course) such data structures
“data structures with built-in organization”.

CS 6212 Design and Analysis of Algorithms Data Structures

6

WHEN DO WE NEED A DATA STRUCTURE?
-- IN THE CONTEXT OF ALGORITHM DESIGN --

• A brainstorming exercise

CS 6212 Design and Analysis of Algorithms Data Structures

7

WHEN DO WE NEED A DATA STRUCTURE?
-- IN THE CONTEXT OF ALGORITHM DESIGN --

• If, in an algorithm, one or more operations

• Are called upon to execute many times on some set of data

• At that point, it may lead to more efficiency (better speed) if

• That set of data and those operations are implemented by an
efficient data structure

CS 6212 Design and Analysis of Algorithms Data Structures

8

STACKS
-- DEFINITION --

• A stack S is a data structure where
• The data is of any kind (int, float/double, char, strings, etc.)

• The operations
• Push(S,𝑎𝑎): inserts a new data element 𝑎𝑎 into the structure

• Pop(S): deletes (and returns) the most recently added data

element

• Top(S): returns (but does not delete) the most recently added

data element

• The stack is a data structure that implements the “last in, first out”
(LIFO) policy (aka, “last come, first serve”)

CS 6212 Design and Analysis of Algorithms Data Structures

9

STACKS
-- IMPLEMENTATION--

Data organization:
• Array S[1:n], and an index k to the

next empty slot, or
• A linked list, with a pointer to the

most recently added record

Procedure Push(S,a)
begin

S[k]=a;
k++; // what if k==n+1?

end
FunctionPop(S)
begin

if (k==1) then
return null;

end if
k--;
return(S[k]);

end

Function Top(S)
begin

if (k==1) then
return null;

else
return(S[k-1]);

end if
end

CS 6212 Design and Analysis of Algorithms Data Structures

10

Time: O(1),
which means
constant

Time: O(1) Time: O(1)

QUEUES
-- DEFINITION --

• A queue Q is a data structure where

• The data is of any kind (int, float/double, char, strings, etc.)

• The operations

• enqueue(Q,𝑎𝑎): inserts a new data element 𝑎𝑎 into the structure

• dequeue (Q): deletes (and returns) the oldest (i.e., least
recently) added data element

• The queue is a data structure that implements the “first in, first
out” (FIFO) policy (aka, “first come, first serve”)

CS 6212 Design and Analysis of Algorithms Data Structures

11

QUEUES
-- IMPLEMENTATION--

Data organization:
• Array S[1:n], an index head pointing to the oldest element in the queue,

and an index tail pointing to the next empty slot where a new element
will be added , OR

• A linked list, with two pointers head and tail

Procedure enqueue(Q,a)
begin

Q[tail]=a;
tail--;

end

Function dequeue(Q)
begin

head--;
return (Q[head+1]);

end

• The array implementation has a lot of issues: Name them?
• Better implementations:

- Circular arrays; - Even better: Linked lists (Why?)

CS 6212 Design and Analysis of Algorithms Data Structures

12

Time: O(1) Time: O(1)

Initially: tail=n; head=?

If tail==0, what
happens?

If head==0,
what happens?

RECORDS AND POINTERS
-- NEED TO EXPAND OUR SYNTAX--

• As we saw in stacks and queues, arrays are not always adequate for implementing data
structures

• Data structures are dynamic: they grow and shrink at execution time
• Whereas arrays are static in size: their size is determined at compile time
• Arrays are too simple to represent complicated data organizations such as arbitrary trees

• Therefore, we need to expand the syntax and language structure to allow for
• Dynamic data structures that grow and shrink at execution without memory limitations
• Allocation (and release) of memory (of user-defined data type) dynamically as needed
• Addressing schemes for dynamically allocated memory

• Records and pointers are an important way for meetings those goals

CS 6212 Design and Analysis of Algorithms Data Structures

13

RECORDS AND POINTERS
-- RECORD DEFINITION --

• A record is an aggregate of several elements called fields (or
members), where

• each field is a variable of a standard type or of a record type

• Syntax (in our pseudo language), and an example of rec def+decl

• In object-oriented programming (OOP), a record corresponds to a class

CS 6212 Design and Analysis of Algorithms Data Structures

14

Example:
record employee
begin

char name[1:30];
int SSN;
char address[1:100];
float salary;

end

Syntax for defining a record type:
record name
begin

field declaration;
…….
field declaration;
field declaration;

end

employee x;
// creates memory for
an actual employee
record

employee y[1:10];
// creates an array of
10 employee records

RECORDS AND POINTERS
-- POINTERS --

• A pointers is an address

• Like a home address, specifying the location of a house

• But in computers, it is simply an index (integer) to a memory location

• Note the important difference between an object and its address

CS 6212 Design and Analysis of Algorithms Data Structures

15

Object Address

A house:
An actual physical structure with
rooms,kitchen, doors, land, etc.

A couple of lines:
123 Main Street
Washington, DC 20052

Record:
employee x;
// occupies a huge chunk of
memory

An index:
Single integer index of the
first byte of x in memory

RECORDS AND POINTERS
-- POINTERS VISUALIZATION --

CS 6212 Design and Analysis of Algorithms Data Structures

16

RECORDS AND POINTERS
-- CONTRAST B/W REC DEF, REC DECL, AND POINTERS --
Type Definition Declaration Pointer

record employee
begin

char name[1:30];
int SSN;
char address[1:100];
float salary;

end

employee x;

// occupies a big chunk of
memory

Address of x;

// Single integer index of the
first byte of x in memory

Record definition is like a
Blueprint

A physical object matching
the blue print

The index of the of the 1st byte of the
physical record in memory

123 Main Street
Washington, DC 20052
USA

CS 6212 Design and Analysis of Algorithms Data Structures

17

ACCESS TO RECORDS AND THEIR FIELDS

• Syntax: if X is a record and F is a field in X, we access F using the dot syntax

• X.F accesses the field F of record X

• Example:

• Examples:

• Overwrite the SSN field of x with value 124555678: x.SSN = 124555678;

• Change the salary value (of $100,000) to x: x.salary=100000;

• Give x a raise of $5000: x.salary = x.salary+5000;

• Read the SSN of x and assign that value to a new var: int S=x.SSN;

CS 6212 Design and Analysis of Algorithms Data Structures

18

employee x; // allocates empty memory for x
x.name=“John Smith”; // fill in field “name” of x
x.SSN=123456789; // fill in field “SSN” of x
x.salary=50000; // fill in field “salary’ of x
x.address=“123 main St\n DC, USA”;

USING ADDRESSES OF RECORDS

• Suppose x is a declared employee record

• To get the address of x:
1. Declare a variable p of type “employee address”, such as any of:

• employee * p; employeePointer p; employeePtr p; employeeAdr p;

2. Assign to p the address of x

• p=&x;

• But it is OK to write

• p=x; or p=address(x); or anything that says that p is the address of x

• Accessing the fields using the record address (use the arrow or dot syntax)

• p -> salary; but still OK to write p.salary;

CS 6212 Design and Analysis of Algorithms Data Structures

19

CREATING RECORDS DYNAMICALLY
-- WHY --

• In many algorithmic situations
• Data are added and deleted during execution

• The number of additions/deletions vary from execution to execution (i.e., from
input to input)

• The maximum size of the data (structures) may not be known ahead of time

• For example, we may not know how big a queue or a stack will grow

• Therefore, we need a mechanism that
• Allows us to create (reserve) memory dynamically (i.e., during execution), such as

allocation of new records of a certain pre-defined type, as needed during execution

• Manipulate (i.e., read and write) the dynamically created records

CS 6212 Design and Analysis of Algorithms Data Structures

20

CREATING RECORDS DYNAMICALLY
-- HOW--

• Use new to create a record of a predefined type, returning the address
of the allocated memory

• Syntax: recordPtr p=new(predefined-record-type)

• Example: employeePtr p=new(employee);

• Details:
• new is a call to he OS to find+reserve a free chunk of memory large enough to hold a full record

• Once done, the OS returns to the calling the address of the allocated record

• Ex: After “employeePtr p=new(employee);” is done, p has the address of the allocated record

• The allocated record is empty

• You can now fill in the individual fields

with data of your own

CS 6212 Design and Analysis of Algorithms Data Structures

21

Example:
employeePtr p = new (employee);
p.name=“John Smith”;
p.SSN=312959876;
p.salary=200000;
p.address=“345 Maple Street\n Ontario”;
p.next=null; // assumed null by default

SELF-REFERENTIAL RECORDS

• A self-referential record is a record where at least one of the fields is of type “pointer
to a record of the same type”

• Example: modify the employee record so it has

CS 6212 Design and Analysis of Algorithms Data Structures

22

Define a record type employee:
record employee
begin

char name[1:30];
int SSN;
char address[1:100];
float salary;
employeePtr next; // a new field

end

LINKED LISTS
-- SINGLY LINKED LISTS --

• A singly linked list is data structure (with built-in
organization) where:

• The organization is a sequence of self-referential records
• Every record has a field that points to the next record in the sequence

• Records usually hold data field(s), as pre-defined by the user

• A pointer Pstart that points to the first record is part of the data structure
• Optionally, a pointer Pend that points to the end-record of the list is

included
• The operations are (typically): insert(…), find(…), delete(…)

• Useful in many situations (where navigation can be done in one
direction), including the implementation of unlimited stacks and queues

CS 6212 Design and Analysis of Algorithms Data Structures

23

id=10 next id=12 next id=14 next id=18 next

Pstart

LINKED LISTS
-- SPECS OF SINGLY LINKED LIST OPERATIONS --

• Find(L, key): finds a record in the list, whose uniquely identifying “key” field has
the specified value, and returns the address of that record if found, null otherwise

• Find(L, int k): returns the address of the kth record in the list (or null if k is larger
than the size of list)

• Insert(L, a): dynamically creates a new record, adds the data ‘a” to the data field(s)
of the record, and put the record at the end (or start) of the list

• Insert(L, a,k): like above, except the new record is inserted as the kth record in the
list (if k is non-negative value ≤ the size of the list)

• Delete(L, p), Delete(L,key): delete the record whose address is p or whose key
(uniquely identifying value) is the specified value, and “smooth out” the gap

CS 6212 Design and Analysis of Algorithms Data Structures

24

LINKED LISTS
-- AN EXAMPLE OF SINGLY LINKED LISTS --

• Create a new (simple) record type (call it simpleRec), and then create a list:

CS 6212 Design and Analysis of Algorithms Data Structures

25

//Define a new record type:
record simpleRec
begin

int id;
simpleRecPtr next;

end

// create and populate a list of 10 records
simpleRecPtr Pstart = new(simpleRec);
Pstart.id=10;
simpleRecPtr p = Pstart ;
for n=1 to 9 do

simpleRecPtr q=new(simpleRec);
q.id=10+2*n;
p.next=q;
p=p.next;

end for

id=10 next id=12 next id=14 next id=18 next

Pstart

LINKED LISTS
-- IMPLEMENTATION OF SINGLY LINKED LIST OPS --

Function Find(L,a)
Begin

Pointer p=Pstart of L;
While(p!=null && p.key!=a) do

p=p.next;
End while
Return p;

End Find

Procedure Insert(L,a) // inserts at the start
Begin

Pointer p=new(record-type);
p.data=a;
p.next=Pstart of L;
Pstart = p;
// the newly created record is the new start

End Insert

Procedure Delete(L,a)
Begin

Pointer p=Pstart of list L;
Pointer q; // one step behind p
While(p!=null && p.key!=a) do

q=p; p=p.next;
End while
// if record is not found
If (p==null) then return; end if

// continue Delete (L,a) here
If (p==Pstart) then // 1st record to be deleted

Pstart=Pstart.next;
Else

q.next=p.next; // bypass record p
End if
release(p);
// optional, frees memory of deleted record

End

CS 6212 Design and Analysis of Algorithms Data Structures

26

Time: O(|L|)
Time: O(1)

Time: O(|L|)

LINKED LISTS
-- DOUBLY LINKED LISTS --

• Like singly linked lists except that each record has a field that a field that points to the
next record and another field that points to the previous record

CS 6212 Design and Analysis of Algorithms Data Structures

27

//Define a new record type:
record simpleRec
begin

int id;
simpleRecPtr next;
simpleRecPtr prev;

end

// create abd polulate a list of 10 records
simpleRecPtr Pstart = new(simpleRec);
Pstart.id=10;
simpleRecPtr p = Pstart , q;
for n=1 to 9 do

simpleRecPtr q = new(simpleRec);
q.id=10+2*n;
p.next = q; q.prev = p;
p=p.next;

end for
Pend=q;

Pstart

id=12 nextprevid=10 nextprev id=18 nextprev

Pend

CHECK YOUR UNDERSTANDING: QUIZ

• Time to search in a doubly linked list: a. O(|L|2), b. O(|L|), c. O(1)

• Time to delete in a doubly linked list: a. O(|L|2), b. O(|L|), c. O(1)

• Space complexity of a singly linked list: a. O(|L|), b. O(1), c. O(log |L|)

• Both singly linked lists and doubly linked lists have the same Big-O
space complexity: a. YES, b. NO

• Array implementation of stacks and queues can run out of memory
(assuming you computer has infinite RAM):: a. YES, b. NO

• Linked-list implementation of stacks and queues can run out of memory
(assuming your computer has “infinite” RAM): a. YES, b. NO

CS 6212 Design and Analysis of Algorithms Data Structures

28

GRAPHS

• Definition: A graph G=(V,E) consists of a finite set V, whose
elements are called nodes, and a set E, which is a subset of V x V.
The elements of E are called edges.

• Directed vs. undirected graphs:
• If the directions of the edges are of significance, that is, (x,y) is different

from (y,x), the graph is called a directed graph (or digraph).

• Otherwise, the graph is called undirected

• Weighted (di)graph: It is a (di)graph where every edge has a
associated with it a number called its weight.

CS 6212 Design and Analysis of Algorithms Data Structures

29

GRAPH EXAMPLE
• V={1,2,3,…,16}, E={(1,2) , (1,3) , (2,3), (3,4), (4,5), (5,6) , (6,3), ...}

CS 6212 Design and Analysis of Algorithms Data Structures

30

9

1

23

7

4

5

6 8
1110

1312 14

1615

9

1

23

7

4

5

6 8
1110

1312 14

1615

Undirected Directed

WHAT CAN GRAPHS REPRESENT
• A graph can represent a map

• The nodes are points of interest (countries, cities, homes, etc.)
• The edges are transportation lines (e.g., roads, train tracks, etc.)
• If undirected, the edges are two-way streets; if directed, 1-way St.

• A graph can represent a computer/communication network
• The nodes are computers/switches
• The edges are communication lines
• If undirected, the links are bidirectional; id directed, unidirectional

• A graph can represent a type of relation between entities
• The nodes are entities/objects/concepts
• The edges are designated relations between the entities (e.g., friend of,

spouse of, boss of, acquaintance of, generalization of, special case of, etc.)

CS 6212 Design and Analysis of Algorithms Data Structures

31

GRAPHS CONCEPTS
• Adjacency:

• If (x,y) is an edge, then x is said to be adjacent to y,

and y is adjacent from x.

• In undirected graphs, if (x,y) is an edge, we just say that x and y are
adjacent (or x is adjacent to y, or y is adjacent to x). Also, we say that
x is the neighbor of y.

CS 6212 Design and Analysis of Algorithms Data Structures

32

9

1

23

7

4

5

6 8 1110

1312 14

1615

9

1

23

7

4

5

6 8 1110

1312 14

1615

GRAPHS CONCEPTS
-- ADJACENCY, INCIDENCE, DEGREE --

Undirected Graphs Directed Graphs (Digraphs)

Adjacency: If (x,y) is an edge, then x
is said to be adjacent to y, and y is
adjacent from x. We can also say that
x and y are adjacent, and x and y are
neighbors

Adjacency: If (x,y) is an edge, then x is said to
be adjacent to y, and y is adjacent from x.

Degree: The degree of a node x is
the number of neighbors of x.

Indegree: the indegree (fan-in) of a node x is
the number of nodes adjacent to x, i.e., the
number of edges coming to x
Outdegree: the outdegree (fan-out) of x is the
number of node adjacent from x, i.e., number of
edges leaving x.

Incidence: An edge e=(x,y) is said to be incident to y and incident from x

CS 6212 Design and Analysis of Algorithms Data Structures 33

GRAPHS CONCEPTS
-- PATHS, CYCLES, DISTANCE --

Undirected Graphs Directed Graphs (Digraphs)

Path: A path from a node 𝑥𝑥 to a node 𝑦𝑦 is a sequence of nodes 𝑥𝑥, 𝑥𝑥1 ,𝑥𝑥2 , … ,𝑥𝑥𝑛𝑛 ,𝑦𝑦 such that
𝑥𝑥 is adjacent to 𝑥𝑥1, 𝑥𝑥1 is adjacent to 𝑥𝑥2, ..., and 𝑥𝑥𝑛𝑛 is adjacent to 𝑦𝑦.
Note: A path can go through a node multiple times.
A simple path: It is a path where no node repeats.

Path length: The length of a path is the number of its edges (not number of nodes), if
the graph is unweighted. If the graph is weighted, the length of a path is the sum of the
weights of its edges.

Distance: the distance from a node x to a node y in a (di)graph is the length of the
shortest path from x to y.

Cycle: A cycle is a path that begins and ends at the same node.

CS 6212 Design and Analysis of Algorithms Data Structures 34

GRAPHS CONCEPTS
-- PATHS, CYCLES, DISTANCE --

CS 6212 Design and Analysis of Algorithms Data Structures 35

9

1

23

7

4

5

6 8 1110

1312 14

1615

9

1

23

7

4

5

6 8 1110

1312 14

1615

GRAPHS CONCEPTS
-- CONNECTIVITY--

Undirected Graphs Directed Graphs (Digraphs)

Connected: a graph is connected if for
every pair of nodes there is at least one path
between them.

Strongly Connected: a digraph is
strongly connected if there is at least one
path from every node x to every node y

Disconnected: a graph is disconnected if it
is not connected

Weakly connected: a digraph is weakly
connected if the underlying undirected
graph (derived by ignoring the edge
directions) is connected.

Connected component (of a graph G): It is
any maximal connected subgraph of G.
A subgraph of G is a subset of nodes with
all their edges inherited from G.
Maximal: If any other node from G is
added (along with its incident edges) to the
subgraph, the latter becomes disconnected

Strongly connected component: It is
any maximal strongly connected
subgraph of G

CS 6212 Design and Analysis of Algorithms Data Structures 36

GRAPH REPRESENTATIONS
• There are two standard representations of (di)graphs

• Adjacency matrix

• Adjacency lists

• Let G=(V,E) be a (di)graph where V={1,2,…,n}

• Adjacency Matrix: An 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴[1:𝑛𝑛, 1:𝑛𝑛] where

𝐴𝐴 𝑖𝑖, 𝑗𝑗 = �1 if 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, that is, 𝑖𝑖, 𝑗𝑗 is an edge
0 if 𝑖𝑖, 𝑗𝑗 ∉ 𝐸𝐸, that is, 𝑖𝑖, 𝑗𝑗 is not an edge

• If the (di)graph is weighted, the matrix becomes weight matrix 𝑊𝑊 1:𝑛𝑛, 1:𝑛𝑛 :

𝑊𝑊 𝑖𝑖, 𝑗𝑗 = �
weight of edge 𝑖𝑖, 𝑗𝑗 if 𝑖𝑖, 𝑗𝑗 is an edge
∞ if 𝑖𝑖, 𝑗𝑗 is not an edge

CS 6212 Design and Analysis of Algorithms Data Structures

37

GRAPH REPRESENTATIONS
-- ADJACENCY LISTS --

• Let G=(V,E) be a (di)graph where V={1,2,…,n}

• Adjacency Lists representation:
• An array 𝐴𝐴 1:𝑛𝑛 of pointers to linked lists, where

• ∀ nodes 𝑖𝑖,𝐴𝐴 𝑖𝑖 is pointer to the start of a linked list containing all the nodes adjacent from
node 𝑖𝑖

• The order of the records (one record per node) in each list is arbitrary

• One convenient order: increasing order

CS 6212 Design and Analysis of Algorithms Data Structures

38

9

1

23

7

4

5

6 8 1110

1312 14

1615

TREES
• Definition: A tree is an undirected, connected, acyclic graph

• In a tree, there is exactly one simple path between every pair of nodes

• Definition: A rooted tree is a tree where one node is designated as root.

• Hierarchical layout of a rooted tree:
• By holding a rooted tree at its root, and letting the other nodes descend from it, we get a hierarchical structure.
• Note that there is exactly one path from the root to any node

CS 6212 Design and Analysis of Algorithms Data Structures

39

1

5 6

32

7
4

98

1
3

8

54

2

1211

76

9

13

10

TREE CONCEPTS
-- PARENTS, CHILDREN, ANCESTORS, DESCENDANTS --

• Let T be a rooted tree rooted at node r
• Every node x (other than r) hangs down

from a single node, called parent of x
• The nodes adjacent to x and hang down

from it are called children of x

• A leaf is a node that has no children.

• An internal node is any non-leaf

• The ancestors of x are the nodes on the path from x to r, including x and r

• The proper ancestors of x are all the ancestors of x except x itself

• The descendants of x are: x, its x, their children, and so on all the way down

• The proper descendants of x are all the descendants of x except x itself

CS 6212 Design and Analysis of Algorithms Data Structures

40

1

3

8

54

2

1211

76

9

13

10

TREE CONCEPTS
-- SUBTREES, DEPTH, HEIGHT --

• Let T be a rooted tree rooted at node r

• Subtree: the subtree rooted at x is the

tree consisting of x and all its descendants

• The depth of node x is the distance from the root r to node x

• The height of x is the distance from x to the farthest descendant of x

• The height (or depth) of the tree is the height of the root

CS 6212 Design and Analysis of Algorithms Data Structures

41

1

3

8

54

2

1211

76

9

13

10

TREE CONCEPTS
-- LEVELS --

• Let T be a rooted tree rooted at node r, in a top-down hierarchical layout

• The nodes clearly partition into levels:
• The top level contains just the root,

and it is labeled level 0

• The next level, labeled level 1,

contains the children of the root

• The level after that, labeled level 2,

contains the grandchildren of the root

• and so on.

• Observation: The depth of node x is the label of its level

• The height (or depth) of the tree is the label of its lowest level

CS 6212 Design and Analysis of Algorithms Data Structures

42

1

3

8

54

2

1211

76

9

13

10

CHECK YOUR UNDERSTANDING: QUIZ

• In a rooted tree, the depth of x = height of x: Yes or No?

• In a rooted tree, the depth of the tree = height of x the tree: Yes or No?

• In a rooted tree, not laid out in a top-down hierarchy:
• A leaf is: (a) Any node of degree 1; (b) the root if it is of degree 0, and any node of degree 1

other than the root; (c) Any node of degree of degree 0

• Depth of x is: (a) distance from root to x, (b) index of x, (c) distance from x is a leaf
descendant of x

• Height of x is: (a) distance from root to x, (b) distance from x is a closest leaf reachable from
of x, (c) distance from x is a farthest leaf reachable from x

• Depth of the tree is: (a) the radius of the graph from the root (i.e., largest distance from r to
any node), (b) the distance from r to the closest leaf

CS 6212 Design and Analysis of Algorithms Data Structures

43

BINARY TREES
• Definition: A binary tree is a rooted tree

where every node has at most two children

• For convenience, the children of each node

are designated as left child and right child

• A node can have 2 children, a left child only,

a right child only, on none

• Representation: Every node can be represented as a record of at least three fields

• Data (could be one or more fields storing data)

• Left (a pointer pointing to the left child, or null if there is no left child)

• Right (a pointer pointing to the right child , or null if there is no right child)

• Parent (Optional, pointing to the parent node)

CS 6212 Design and Analysis of Algorithms Data Structures

44

1

3

8

54

2

1211

76

9

13

10

BINARY TREES
-- SPECIAL CASES --

• Definition: A perfect binary tree is a binary tree where every non-leaf
has two children and all the leaves are at the same level

• Exercise: Show that the number of nodes in level i of a perfect binary
tree is 2i. Show also that a perfect binary tree of height h has 2h+1 - 1
nodes

• The canonical labeling of a perfect binary tree: It is a labeling of the
nodes from top to bottom, left to right, starting with the root being
labeled 1

• Definition: An almost complete binary tree of n nodes is the binary
tree consisting of the first n nodes of a perfect binary tree

CS 6212 Design and Analysis of Algorithms Data Structures

45

BINARY TREES
-- SPECIAL CASES --

CS 6212 Design and Analysis of Algorithms
Data Structures 46

1

3

54

2

76

1

3

8

54

2

76

109

BINARY TREES
-- PERFECT/ALMOST COMPLETE BINARY TREES--

• Observation: In a canonically labeled perfect/almost complete binary
tree:

• The labels of the children of node i are 2i and 2i+1

• The label of the parent of i is ⌊𝑖𝑖
2
⌋ (integer division of i by 2).

• Observations about almost complete binary trees:
• If the bottom level is removed, the tree becomes a perfect binary tree.

• The nodes in the bottom level are packed to the left end of the tree without
any "holes"

• Array implementation of almost complete binary tree (of n nodes): An
array A[1:n] where A[i] stores the data of node labeled i.

CS 6212 Design and Analysis of Algorithms Data Structures

47

K-ARY TREES
-- EXTENSIONS OF BINARY TREES --

• Definition: Given a positive integer k>1, a k-ary tree is a rooted tree where
every nose has at most k childen

• Special case: When k=3, the tree is called a ternary tree

• Caution: A 4-ary tree is not called quad-tree. Rather a quadtree is a tree where every
internal node has exactly (rather than at most) 4 children.

• Definition: A perfect k-ary tree is a k-ary tree where internal node has exactly
k children, and all the leaves are at the same (bottom) level

• Exercises:
1. Think of a definition of almost complete k-ary trees

2. Think of canonical labeling of perfect /almost complete k-ary trees

3. Think if and how perfect / almost complete k-ary trees can be implemented with arrays

CS 6212 Design and Analysis of Algorithms Data Structures

48

	CS 6212 Design and Analysis of Algorithms��Lecture: Data Structures – Part I
	Objectives of this Lecture
	Outline
	What is a data structure
	The design process of �a data structure
	A Note about data structure definition and design
	When do we need a data structure?�-- In the context of algorithm design --
	When do we need a data structure?�-- In the context of algorithm design --
	Stacks�-- Definition --
	Stacks�-- implementation--
	Queues�-- Definition --
	queues�-- implementation--
	Records and Pointers�-- need to expand our syntax--
	Records and Pointers�-- record definition --
	Records and Pointers�-- Pointers --
	Records and Pointers�-- Pointers Visualization --
	Records and Pointers�-- Contrast b/w rec def, rec decl, and Pointers --
	Access to Records and their fields
	Using addresses of Records
	Creating Records Dynamically �-- why --
	Creating Records Dynamically �-- how--
	Self-referential records
	Linked lists�-- Singly Linked Lists --
	Linked lists�-- Specs of Singly Linked List operations --
	Linked lists�-- An example of Singly Linked Lists --
	Linked lists�-- Implementation of Singly Linked List ops --
	Linked lists�-- Doubly Linked Lists --
	 Check Your understanding: Quiz
	Graphs
	Graph Example
	What can graphs represent
	Graphs Concepts
	Graphs Concepts�-- Adjacency, incidence, degree --
	Graphs Concepts�-- Paths, cycles, distance --
	Graphs Concepts�-- Paths, cycles, distance --
	Graphs Concepts�-- Connectivity--
	 Graph representations
	 Graph representations�-- Adjacency Lists --
	 Trees
	 Tree Concepts�-- parents, children, ancestors, descendants --
	 Tree Concepts�-- Subtrees, depth, height --
	 Tree Concepts�-- levels --
	 Check Your understanding: Quiz
	 Binary trees
	 Binary trees�-- special cases --
	Binary trees�-- special cases --
	 Binary trees�-- perfect/almost complete binary trees--
	 K-ary trees�-- Extensions of binary trees --

