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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Explain what a data structure is, and what it means to design a 
data structure

• Indicate when a data structure is needed, and specify the data 
structure that matches the situation

• Describe standard data structures such as stacks, queues, 
singly/doubly linked lists, and discuss and compare/contrast 
different implementations of them

• Define graphs, graph representations, and basic graph concepts

• Define trees, tree representations, and basic related concepts
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OUTLINE

• Preliminaries 
• Definition of data structures

• Design of data structure

• When a data structure is needed in the context of algorithm design

• Overview of Stacks and Queues

• Records and Pointers

• Linked Lists

• Graphs

• Trees
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WHAT IS A DATA STRUCTURE

• A data structure is
• An organization of a data set 

• Several operations / actions to be performed on the data set

• Examples of data organizations: 
• Arrays, tables (multidemensional arrays), lists, trees, etc

• Examples of operations/actions:
• Insert (i.e., add) a new data element

• Find a data element in the data set

• Delete an existing element

• Find the minimum, or the maximum, or the most recently added element
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THE DESIGN PROCESS OF 
A DATA STRUCTURE

• Any design process is an input-output process
• Input: the specifications (“specs”) of what is to be designed

• Output: A design that fulfills the specs

• Data structure design process
• Input: 

• Specs of the data set: data type, and possibly data set size 

• Specifications of the operations 

• Output:
• An organization of the data set

• An algorithm for each operation
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A NOTE ABOUT DATA STRUCTURE DEFINITION 
AND DESIGN

• The specifications of some data structures include (partially 
or fully) the actual organization of the data

• Examples: linked lists, binary trees, heaps, etc. 

• In such cases, we’ll call (in this course) such data structures 
“data structures with built-in organization”.
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WHEN DO WE NEED A DATA STRUCTURE?
-- IN THE CONTEXT OF ALGORITHM DESIGN --

• A brainstorming exercise
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WHEN DO WE NEED A DATA STRUCTURE?
-- IN THE CONTEXT OF ALGORITHM DESIGN --

• If, in an algorithm, one or more operations

• Are called upon to execute many times on some set of data

• At that point, it may lead to more efficiency (better speed) if

• That set of data and those operations are implemented by an 
efficient data structure
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STACKS
-- DEFINITION --

• A stack S is a data structure where
• The data is of any kind (int, float/double, char, strings, etc.)

• The operations
• Push(S,𝑎𝑎): inserts a new data element 𝑎𝑎 into the structure

• Pop(S): deletes (and returns) the most recently added data 

element 

• Top(S):  returns (but does not delete) the most recently added 

data element 

• The stack is a data structure that implements the “last in, first out” 
(LIFO) policy (aka, “last come, first serve”)
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STACKS
-- IMPLEMENTATION--

Data organization:
• Array S[1:n], and an index k to the 

next empty slot, or
• A linked list, with a pointer to the 

most recently added record

Procedure Push(S,a)
begin

S[k]=a;
k++; // what if k==n+1?

end
FunctionPop(S)
begin

if (k==1) then
return null;

end if
k--;
return(S[k]);

end 

Function Top(S)
begin

if (k==1) then
return null;

else
return(S[k-1]);

end if
end 
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Time: O(1), 
which means 
constant

Time: O(1) Time: O(1)



QUEUES
-- DEFINITION --

• A queue Q is a data structure where

• The data is of any kind (int, float/double, char, strings, etc.)

• The operations

• enqueue(Q,𝑎𝑎): inserts a new data element 𝑎𝑎 into the structure

• dequeue (Q): deletes (and returns) the oldest (i.e., least 
recently) added data element 

• The queue is a data structure that implements the “first in, first 
out” (FIFO) policy (aka, “first come, first serve”)
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QUEUES
-- IMPLEMENTATION--

Data organization:
• Array S[1:n], an index head pointing to the oldest element in the queue, 

and an index tail pointing to the next empty slot where a new element 
will be added , OR

• A linked list, with two pointers head and tail

Procedure enqueue(Q,a)
begin

Q[tail]=a;
tail--;

end

Function dequeue(Q)
begin

head--;
return (Q[head+1]);

end

• The array implementation has a lot of issues: Name them?
• Better implementations:

- Circular arrays; - Even better: Linked lists  (Why?)
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Time: O(1) Time: O(1)

Initially: tail=n;    head=?

If tail==0, what 
happens?

If head==0, 
what happens?



RECORDS AND POINTERS
-- NEED TO EXPAND OUR SYNTAX--

• As we saw in stacks and queues, arrays are not always adequate for implementing data 
structures

• Data structures are dynamic: they grow and shrink at execution time
• Whereas arrays are static in size: their size is determined at compile time
• Arrays are too simple to represent complicated data organizations such as arbitrary trees

• Therefore, we need to expand the syntax and language structure to allow for
• Dynamic data structures that grow and shrink at execution without memory limitations
• Allocation (and release) of memory (of user-defined data type) dynamically as needed
• Addressing schemes for dynamically allocated memory 

• Records and pointers are an important way for meetings those goals
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RECORDS AND POINTERS
-- RECORD DEFINITION --

• A record is an aggregate of several elements called fields (or 
members), where 

• each field is a variable of a standard type or of a record type

• Syntax (in our pseudo language), and an example of rec def+decl

• In object-oriented programming (OOP), a record corresponds to a class
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Example:
record employee
begin

char name[1:30];
int SSN;
char address[1:100];
float salary;

end

Syntax for defining a record type:
record name
begin

field declaration;
…….
field declaration;
field declaration;

end

employee x;
// creates memory for 
an actual employee 
record

employee y[1:10];
// creates an array of 
10 employee records



RECORDS AND POINTERS
-- POINTERS --

• A pointers is an address 

• Like a home address, specifying the location of a house

• But in computers, it is simply an index (integer) to a memory location

• Note the important difference between an object and its address
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Object Address

A house:
An actual physical structure with 
rooms,kitchen, doors, land, etc.

A couple of lines:
123 Main Street
Washington, DC 20052

Record:
employee x;
// occupies a huge chunk of 
memory

An index:
Single integer index of the 
first byte of x in memory



RECORDS AND POINTERS
-- POINTERS VISUALIZATION --
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RECORDS AND POINTERS
-- CONTRAST B/W REC DEF, REC DECL, AND POINTERS --
Type Definition Declaration Pointer

record employee
begin

char name[1:30];
int SSN;
char address[1:100];
float salary;

end

employee x;

// occupies a big chunk of 
memory

Address of x;

//  Single integer index of the   
first byte of x in memory

Record definition is like a 
Blueprint

A physical object matching 
the blue print

The index of the of the 1st byte of the 
physical record in memory

123 Main Street
Washington, DC 20052
USA
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ACCESS TO RECORDS AND THEIR FIELDS

• Syntax: if X is a record and F is a field in X, we access F using the dot syntax

• X.F  accesses the field F of record X

• Example:

• Examples: 

• Overwrite the SSN field of x with value 124555678: x.SSN = 124555678;

• Change the salary value (of $100,000) to x: x.salary=100000;

• Give x a raise of $5000: x.salary = x.salary+5000;

• Read the SSN of x and assign that value to a new var: int S=x.SSN;
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employee x;  // allocates empty memory for x
x.name=“John Smith”;   // fill in field “name” of x
x.SSN=123456789;       // fill in field “SSN” of x
x.salary=50000; // fill in field “salary’ of x
x.address=“123 main St\n DC, USA”;



USING ADDRESSES OF RECORDS

• Suppose x is a declared employee record

• To get the address of x:
1. Declare a variable p of type “employee address”, such as any of:

• employee * p; employeePointer p; employeePtr p; employeeAdr p;

2. Assign to p the address of x 

• p=&x;

• But it is OK to write 

• p=x; or p=address(x); or anything that says that p is the address of x

• Accessing the fields using the record address (use the arrow or dot syntax)

• p -> salary;          but still OK to write p.salary;
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CREATING RECORDS DYNAMICALLY 
-- WHY --

• In many algorithmic situations
• Data are added and deleted during execution

• The number of additions/deletions vary from execution to execution (i.e., from 
input to input)

• The maximum size of the data (structures) may not be known ahead of time

• For example, we may not know how big a queue or a stack will grow

• Therefore, we need a mechanism that
• Allows us to create (reserve) memory dynamically (i.e., during execution), such as 

allocation of new records of a certain pre-defined type, as needed during execution

• Manipulate (i.e., read and write) the dynamically created records
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CREATING RECORDS DYNAMICALLY 
-- HOW--

• Use new to create a record of a predefined type, returning the address 
of the allocated memory

• Syntax: recordPtr p=new(predefined-record-type)

• Example: employeePtr p=new(employee);

• Details:
• new is a call to he OS to find+reserve a free chunk of memory large enough to hold a full record

• Once done, the OS returns to the calling the address of the allocated record

• Ex: After “employeePtr p=new(employee);” is done, p has the address of the allocated record

• The allocated record is empty

• You can now fill in the individual fields 

with data of your own
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Example:
employeePtr p = new (employee);
p.name=“John Smith”;
p.SSN=312959876;
p.salary=200000;
p.address=“345 Maple Street\n Ontario”;
p.next=null;     // assumed null by default



SELF-REFERENTIAL RECORDS

• A self-referential record is a record where at least one of the fields is of type “pointer 
to a record of the same type”

• Example: modify the employee record so it has 
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Define a record type employee:
record employee
begin

char name[1:30];
int SSN;
char address[1:100];
float salary;
employeePtr next; // a new field

end



LINKED LISTS
-- SINGLY LINKED LISTS --

• A singly linked list is data structure (with built-in 
organization) where:

• The organization is a sequence of self-referential records
• Every record has a field that points to the next record in the sequence

• Records usually hold data field(s), as pre-defined by the user

• A pointer Pstart that points to the first record is part of the data structure
• Optionally, a pointer Pend that points to the end-record of the list is 

included
• The operations are (typically): insert(…), find(…), delete(…)

• Useful in many situations (where navigation can be done in one 
direction), including the implementation of unlimited stacks and queues
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id=10 next id=12 next id=14 next id=18 next

Pstart



LINKED LISTS
-- SPECS OF SINGLY LINKED LIST OPERATIONS --

• Find(L, key): finds a record in the list, whose uniquely identifying “key” field has 
the specified value, and returns the address of that record if found, null otherwise

• Find(L, int k): returns the address of the kth record in the list (or null if k is larger 
than the size of list)

• Insert(L, a): dynamically creates a new record, adds the data ‘a” to the data field(s) 
of the record, and put the record at the end (or start) of the list

• Insert(L, a,k): like above, except the new record is inserted as the kth record in the 
list (if k is non-negative value ≤ the size of the list)

• Delete(L, p), Delete(L,key): delete the record whose address is p or whose key 
(uniquely identifying value) is the specified value, and “smooth out” the gap
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LINKED LISTS
-- AN EXAMPLE OF SINGLY LINKED LISTS --

• Create a new (simple) record type (call it simpleRec), and then create a list:
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//Define a new record type:
record simpleRec
begin

int id;
simpleRecPtr next;

end

// create and populate a list of 10 records
simpleRecPtr Pstart = new(simpleRec);
Pstart.id=10;
simpleRecPtr p = Pstart ;
for n=1 to 9 do

simpleRecPtr q=new(simpleRec);
q.id=10+2*n;
p.next=q;
p=p.next;

end for

id=10 next id=12 next id=14 next id=18 next

Pstart



LINKED LISTS
-- IMPLEMENTATION OF SINGLY LINKED LIST OPS --

Function Find(L,a)
Begin 

Pointer p=Pstart of L;
While(p!=null && p.key!=a) do

p=p.next;
End while
Return p;

End Find

Procedure Insert(L,a)   // inserts at the start
Begin

Pointer p=new(record-type);
p.data=a;
p.next=Pstart of L;
Pstart = p;  
// the newly created record is the new start

End Insert

Procedure Delete(L,a)
Begin

Pointer p=Pstart of list L;
Pointer q; // one step behind p
While(p!=null && p.key!=a) do

q=p; p=p.next;
End while
// if record is not found
If (p==null) then return; end if

// continue Delete (L,a) here
If (p==Pstart) then // 1st record to be deleted

Pstart=Pstart.next;
Else

q.next=p.next;  // bypass record p
End if 
release(p);  
// optional, frees memory of deleted record

End
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Time: O(|L|)
Time: O(1)

Time: O(|L|)



LINKED LISTS
-- DOUBLY LINKED LISTS --

• Like singly linked lists except that each record has a field that a field that points to the 
next record and another field that points to the previous record
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//Define a new record type:
record simpleRec
begin

int id;
simpleRecPtr next;
simpleRecPtr prev;

end

// create abd polulate a list of 10 records
simpleRecPtr Pstart = new(simpleRec);
Pstart.id=10;
simpleRecPtr p = Pstart ,   q;
for n=1 to 9 do

simpleRecPtr q = new(simpleRec);
q.id=10+2*n;
p.next = q; q.prev = p;
p=p.next;

end for
Pend=q;

Pstart

id=12 nextprevid=10 nextprev id=18 nextprev

Pend



CHECK YOUR UNDERSTANDING: QUIZ

• Time to search in a doubly linked list:  a. O(|L|2),   b. O(|L|),   c. O(1)

• Time to delete in a doubly linked list:  a. O(|L|2), b. O(|L|), c. O(1)

• Space complexity of a singly linked list: a. O(|L|),  b. O(1),  c. O(log |L|)

• Both singly linked lists and doubly linked lists have the same Big-O 
space complexity: a. YES, b. NO

• Array implementation of stacks and queues can run out of memory 
(assuming you computer has infinite RAM)::  a. YES, b. NO

• Linked-list implementation of stacks and queues can run out of memory 
(assuming your computer has “infinite” RAM):  a. YES, b. NO
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GRAPHS

• Definition: A graph G=(V,E) consists of a finite set V, whose 
elements are called nodes, and a set E, which is a subset of V x V. 
The elements of E are called edges.

• Directed vs. undirected graphs: 
• If the directions of the edges are of significance, that is, (x,y) is different 

from (y,x), the graph is called a directed graph (or digraph). 

• Otherwise, the graph is called undirected

• Weighted (di)graph:  It is a (di)graph where every edge has a 
associated with it a number called its weight.
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GRAPH EXAMPLE
• V={1,2,3,…,16}, E={(1,2) , (1,3) , (2,3), (3,4), (4,5), (5,6) , (6,3), ...}  
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WHAT CAN GRAPHS REPRESENT
• A graph can represent a map

• The nodes are points of interest (countries, cities, homes, etc.)
• The edges are transportation lines (e.g., roads, train tracks, etc.)
• If undirected, the edges are two-way streets; if directed, 1-way St.

• A graph can represent a computer/communication network
• The nodes are computers/switches
• The edges are communication lines
• If undirected, the links are bidirectional; id directed, unidirectional

• A graph can represent a type of relation between entities
• The nodes are entities/objects/concepts
• The edges are designated relations between the entities (e.g.,  friend of, 

spouse of, boss of, acquaintance of, generalization of, special case of, etc.)
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GRAPHS CONCEPTS
• Adjacency: 

• If (x,y) is an edge, then x is said to be adjacent to y, 

and y is adjacent from x.

• In undirected graphs, if (x,y) is an edge, we just say that x and y are 
adjacent (or x is adjacent to y, or y is adjacent to x). Also, we say that 
x is the neighbor of y.
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GRAPHS CONCEPTS
-- ADJACENCY, INCIDENCE, DEGREE --

Undirected Graphs Directed Graphs (Digraphs)

Adjacency: If (x,y) is an edge, then x 
is said to be adjacent to y, and y is 
adjacent from x. We can also say that 
x and y are adjacent, and x and y are 
neighbors

Adjacency: If (x,y) is an edge, then x is said to 
be adjacent to y, and y is adjacent from x.

Degree: The degree of a node x is 
the number of neighbors of x.

Indegree: the indegree (fan-in) of a node x is 
the number of nodes adjacent to x, i.e., the 
number of edges coming to x
Outdegree: the outdegree (fan-out) of x is the 
number of node adjacent from x, i.e., number of 
edges leaving x.

Incidence: An edge e=(x,y) is said to be incident to y and incident from x
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GRAPHS CONCEPTS
-- PATHS, CYCLES, DISTANCE --

Undirected Graphs Directed Graphs (Digraphs)

Path: A path from a node 𝑥𝑥 to a node 𝑦𝑦 is a sequence of nodes 𝑥𝑥, 𝑥𝑥1 ,𝑥𝑥2 , … ,𝑥𝑥𝑛𝑛 ,𝑦𝑦 such that 
𝑥𝑥 is adjacent to 𝑥𝑥1, 𝑥𝑥1 is adjacent to 𝑥𝑥2, ..., and 𝑥𝑥𝑛𝑛 is adjacent to 𝑦𝑦.
Note:  A path can go through a node multiple times.
A simple path: It is a path where no node repeats.

Path length: The length of a path is the number of its edges (not number of nodes), if 
the graph is unweighted. If the graph is weighted, the length of a path is the sum of the 
weights of its edges.

Distance:  the distance from a node x to a node y in a (di)graph is the length of the 
shortest path from x to y.

Cycle: A cycle is a path that begins and ends at the same node.
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GRAPHS CONCEPTS
-- PATHS, CYCLES, DISTANCE --
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GRAPHS CONCEPTS
-- CONNECTIVITY--

Undirected Graphs Directed Graphs (Digraphs)

Connected: a graph is connected if for 
every pair of nodes there is at least one path 
between them.

Strongly Connected: a digraph is 
strongly connected if there is at least one 
path from every node x to every node y

Disconnected: a graph is disconnected if it 
is not connected

Weakly connected: a digraph is weakly 
connected if the underlying undirected 
graph (derived by ignoring the edge 
directions) is connected.

Connected component (of a graph G): It is 
any maximal connected subgraph of G. 
A subgraph of G is a subset of nodes with 
all their edges inherited from G. 
Maximal: If any other node from G is 
added (along with its incident edges) to the 
subgraph, the latter becomes disconnected

Strongly connected component: It is 
any maximal strongly connected 
subgraph of G
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GRAPH REPRESENTATIONS
• There are two standard representations of (di)graphs

• Adjacency matrix

• Adjacency lists

• Let G=(V,E) be a (di)graph where V={1,2,…,n}

• Adjacency Matrix:  An 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴[1:𝑛𝑛, 1:𝑛𝑛] where 

𝐴𝐴 𝑖𝑖, 𝑗𝑗 = �1 if 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, that is, 𝑖𝑖, 𝑗𝑗 is an edge
0 if 𝑖𝑖, 𝑗𝑗 ∉ 𝐸𝐸, that is, 𝑖𝑖, 𝑗𝑗 is not an edge

• If the (di)graph is weighted, the matrix becomes weight matrix 𝑊𝑊 1:𝑛𝑛, 1:𝑛𝑛 :

𝑊𝑊 𝑖𝑖, 𝑗𝑗 = �
weight of edge 𝑖𝑖, 𝑗𝑗 if 𝑖𝑖, 𝑗𝑗 is an edge
∞ if 𝑖𝑖, 𝑗𝑗 is not an edge
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GRAPH REPRESENTATIONS
-- ADJACENCY LISTS --

• Let G=(V,E) be a (di)graph where V={1,2,…,n}

• Adjacency Lists representation:
• An array 𝐴𝐴 1:𝑛𝑛 of pointers to linked lists, where

• ∀ nodes 𝑖𝑖,𝐴𝐴 𝑖𝑖 is pointer to the start of a linked list containing all the nodes adjacent from 
node 𝑖𝑖

• The order of the records (one record per node) in each list is arbitrary

• One convenient order: increasing order
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TREES
• Definition: A tree is an undirected, connected, acyclic graph

• In a tree, there is exactly one simple path between every pair of nodes

• Definition: A rooted tree is a tree where one node is designated as root. 

• Hierarchical layout of a rooted tree: 
• By holding a rooted tree at its root, and letting the other nodes descend from it, we get a hierarchical structure. 
• Note that there is exactly one path from the root to any node
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TREE CONCEPTS
-- PARENTS, CHILDREN, ANCESTORS, DESCENDANTS --

• Let T be a rooted tree  rooted at node r
• Every node x (other than r) hangs down 

from a single node, called parent of x
• The nodes adjacent to x and hang down 

from it are called children of x

• A leaf is a node that has no children. 

• An internal node is any non-leaf

• The ancestors of x are the nodes on the path from x to r, including x and r

• The proper ancestors of x are all the ancestors of x except x itself

• The descendants of x are: x, its x, their children, and so on all the way down

• The proper descendants of x are all the descendants of x except x itself
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TREE CONCEPTS
-- SUBTREES, DEPTH, HEIGHT --

• Let T be a rooted tree  rooted at node r 

• Subtree: the subtree rooted at x is the 

tree consisting of x and all its descendants

• The depth of node x is the distance from the root r to node x

• The height of x is the distance from x to the farthest descendant of x

• The height (or depth) of the tree is the height of the root
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TREE CONCEPTS
-- LEVELS --

• Let T be a rooted tree  rooted at node r, in a top-down hierarchical layout

• The nodes clearly partition into levels:
• The top level contains just the root, 

and it is labeled level 0 

• The next level, labeled level 1, 

contains the children of the root 

• The level after that, labeled level 2, 

contains the grandchildren of the root

• and so on.

• Observation: The depth of node x is the label of its level

• The height (or depth) of the tree is the label of its lowest level
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CHECK YOUR UNDERSTANDING: QUIZ

• In a rooted tree, the depth of x = height of  x:  Yes or No?

• In a rooted tree, the depth of the tree = height of  x the tree:  Yes or No?

• In a rooted tree, not laid out in a top-down hierarchy:
• A leaf is: (a) Any node of degree 1; (b) the root if it is of degree 0, and any node of degree 1 

other than the root; (c) Any node of degree of degree 0

• Depth of x is: (a) distance from root to x, (b) index of x, (c) distance from x is a leaf 
descendant of x

• Height of x is: (a) distance from root to x, (b) distance from x is a closest leaf reachable from 
of x, (c) distance from x is a farthest leaf reachable from x

• Depth of the tree is: (a) the radius of the graph from the root (i.e., largest distance from r to 
any node), (b) the distance from r to the closest leaf
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BINARY TREES
• Definition: A binary tree is a rooted tree 

where every node has at most two children

• For convenience, the children of each node 

are designated as left child and right child

• A node can have 2 children, a left child only, 

a right child only, on none

• Representation: Every node can be represented as a record of at least three fields

• Data (could be one or more fields storing data)

• Left (a pointer pointing to the left child, or null if there is no left child)

• Right (a pointer pointing to the right child , or null if there is no right child) 

• Parent (Optional, pointing to the parent node)
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BINARY TREES
-- SPECIAL CASES --

• Definition: A perfect binary tree is a binary tree where every non-leaf 
has two children and all the leaves are at the same level

• Exercise: Show that the number of nodes in level i of a perfect binary 
tree is 2i. Show also that a perfect binary tree of height h has 2h+1 - 1 
nodes

• The canonical labeling of a perfect binary tree: It  is a labeling of the 
nodes from top to bottom, left to right, starting with the root being 
labeled 1

• Definition: An almost complete binary tree of n nodes is the binary 
tree consisting of the first n nodes of a perfect binary tree
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BINARY TREES
-- SPECIAL CASES --
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BINARY TREES
-- PERFECT/ALMOST COMPLETE BINARY TREES--

• Observation: In a canonically labeled perfect/almost complete binary 
tree: 

• The labels of the children of node i are 2i and 2i+1

• The label of the parent of i is ⌊𝑖𝑖
2
⌋ (integer division of i by 2).

• Observations about almost complete binary trees: 
• If the bottom level is removed, the tree becomes a perfect binary tree. 

• The nodes in the bottom level are packed to the left end of the tree without 
any "holes"

• Array implementation of almost complete binary tree (of n nodes): An 
array A[1:n] where A[i]  stores the data of node labeled i.
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K-ARY TREES
-- EXTENSIONS OF BINARY TREES --

• Definition: Given a positive integer k>1, a k-ary tree is a rooted tree where 
every nose has at most k childen

• Special case:  When k=3, the tree is called a ternary tree

• Caution: A 4-ary tree is not called quad-tree. Rather a quadtree is a tree where every 
internal node has exactly (rather than at most) 4 children.

• Definition: A perfect k-ary tree is a k-ary tree where internal node has exactly 
k children, and all the leaves are at the same (bottom) level

• Exercises: 
1. Think of a definition of almost complete k-ary trees 

2. Think of canonical labeling of perfect /almost complete k-ary trees

3. Think if and how perfect / almost complete k-ary trees can be implemented with arrays
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